
Increased I/O
Observability with

pg_stat_io

Postgres Performance Observability Sources and
Analysis Techniques

Melanie
Plageman

• Open source Postgres hacking:
executor, planner, storage, and
statistics sub-systems
• I/O Benchmarking and Linux

kernel storage performance tuning
• Recently worked on prefetching

for direct I/O and I/O statistics

https://github.com/
melanieplageman@

Microsoft

Transactio
nal
Workload
I/O
Performan
ce Goals

High transactions per
second (TPS)

Consistent low latency

Common
I/O
Performan
ce Issue
Causes

Working set is not in
memory

Autovacuum
bottlenecked on I/O

Postgres
I/O
Tuning
Targets

Shared buffers

Background writer

Autovacuum

Postgres I/O Statistics Views

pg_stat_database
• hits, reads

pg_statio_all_tables
• hits, reads, read time, write time

pg_stat_bgwriter
• backend writes, backend fsyncs

pg_stat_statements
• shared buffer hits, reads, writes, read time, write time
• local buffer hits, reads, writes, read time, write time

Postgres I/O Statistics Views’ Gaps

• Writes = flushes + extends

• Reads and writes combined for all backend types

• I/O combined for all contexts

pg_stat_io
(pg 16)

backend_type, io_object, io_context,

reads, writes, extends, evictions, reuses, fsyncs

Why Count Flushes and Extends
Separately?
pg_stat_io
• write = flush
• extend = extend

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with

enough space to fit the
new data

INSERT INTO foo VALUES(1,1);

foo

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with

enough space to fit the
new data
i. If no block has enough

free space, extend the
file.

INSERT INTO foo VALUES(1,1);

foo

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with

enough space to fit the
new data
i. If no block has enough

free space, extend the
file.

2. Check for the block in
shared buffers.
i. If it is already loaded,

cache hit!

INSERT INTO foo VALUES(1,1);

fooshared
buffers

No I/O
neede

d

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with

enough space to fit the new
data
i. If no block has enough free

space, extend the file.

2. Check for the block in
shared buffers.
i. If it is already loaded,

success!

3. Otherwise, find a shared
buffer we can use.
i. If it is dirty, flush it.

INSERT INTO foo VALUES(1,1);

fooshared
buffers

flus
hFlush =

”write” in
pg_stat_io

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with enough

space to fit the new data
i. If no block has enough free

space, extend the file.

2. Check for the block in shared
buffers.
i. If it is already loaded, success!

3. Otherwise, find a shared
buffer we can use.
i. If it is dirty, flush it.

4. Read our block into the
buffer.

INSERT INTO foo VALUES(1,1);

fooshared
buffers loa

d

Postgres UPDATE/INSERT I/O
Workflow
1. Find a disk block with enough

space to fit the new data
i. If no block has enough free

space, extend the file.

2. Check for the block in shared
buffers.
i. If it is already loaded, success!

3. Otherwise, find a shared buffer
we can use.
i. If it is dirty, flush it.

4. Read our block into the buffer.
5. Write our data into the buffer.

INSERT INTO foo VALUES(1,1);

foo

(1,1)

shared
buffers

Why Count Flushes and Extends
Separately?
• Synchronous flushes are

avoidable loa
d

flus
h

flush

extend

Why Track I/O Per Context or Per
Backend Type?
pg_stat_io
• backend_type
• io_context

Postgres Autovacuum Workflow

1. Identify the next block to
vacuum.

foo

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to
vacuum.

2. Check for the block in
shared buffers.
i. If it is, vacuum it! (cache

hit)

fooshared
buffers

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to
vacuum.

2. Check for the block in
shared buffers.
i. If it is, vacuum it!

3. Otherwise, find the next
reserved buffer to use.
i. If we are not at the

reservation cap, evict a
shared buffer.

reservation
cap: 4
used: 3

foo

R

shared
buffers

RR

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to
vacuum.

2. Check for the block in
shared buffers.
i. If it is, vacuum it!

3. Otherwise, find the next
reserved buffer to use.
i. If we are not at the

reservation cap, evict a
shared buffer.

ii. If we are reusing a dirty,
reserved buffer, flush it.

reservation
cap: 4
used: 4

foo

RR

shared
buffers

flus
h

RR

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to
vacuum.

2. Check for the block in shared
buffers.
i. If it is, vacuum it!

3. Find the next reserved buffer
to use.
i. If we are not at the reservation

cap, evict a shared buffer.
ii. If we are reusing a dirty,

reserved buffer, flush it.

4. Read the block into the buffer.

reservation
cap: 4
used: 4

foo

RR

shared
buffers

loa
d

RR

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to vacuum.
2. Check for the block in shared

buffers.
i. If it is, vacuum it!

3. Find the next reserved buffer to
use.
i. If we are not at the reservation cap,

evict a shared buffer.
ii. If we are reusing a dirty, reserved

buffer, flush it.

4. Read the block into the buffer.
5. Vacuum the buffer and mark it

dirty.

reservation
cap: 4
used: 4

foo

RR

shared
buffers

RR

0, 3, 5, 6

Postgres Autovacuum Workflow

1. Identify the next block to vacuum.
2. Check for the block in shared

buffers.
i. If it is, vacuum it!

3. Find the next reserved buffer to use.
i. If we are not at the reservation cap,

evict a shared buffer.
ii. If we are reusing a dirty, reserved

buffer, flush it.

4. Read the block into the buffer.
5. Vacuum the buffer and mark it dirty.
6. Upon completing vacuum cycle,

return all reserved buffers.

fooshared
buffers

Why Track I/O Per Backend Type?

• Not all I/O is for blocks
that are part of the
working set
• Autovacuum worker reads

often are of older data

client backend read

autovacuum worker read

loa
d

R loa
d

Why Track I/O Per Context?

• Shared buffers not used
for all I/O
• Vacuum I/O not in shared

buffers

RR

flus
h

loa
d

loa
d

flus
h

client backend normal
context flush

autovacuum worker vacuum
context flush

Analytic Workload I/O
Characteristics
High number of extends
during bulk load operations
like
COPY FROM.

High number of reads
during bulk read operations
of data not in shared
buffers.

foo foo

RR

shared
buffers

RR

loa
d

Why Track I/O Per Context?

• Shared buffers not used
for all I/O
• Large* SELECTs not in

shared buffers

large SELECT (bulkread
context) read

client backend normal context
cache miss

foo

RR

shared
buffers

RR

loa
d

loa
d

evict

*large = table blocks > shared
buffers / 4

Why Count Flushes and Extends
Separately?
• COPY FROM does lots of

extends
• Extends are normal for

bulk writes

RR

shared buffers

RR

foo

flus
h

Data-Driven Tuning with
pg_stat_io

Shared Buffers
Too Small

• client_backend normal context
reads high

128443922

Background
Writer Too

Passive

• client backend normal context writes
high
• background writer normal context
writes high
ocheckpointer writes lower

9986222
776549

Shared Buffers
Not Too Small

• client backend normal context reads
not high
• client backend bulkread context reads
high

OR
• autovacuum worker vacuum context
reads high

9986222

Future
additions

• I/O timing
• ”bypass” IO

Contact me:
@melanieplage
man

	Diapo 1
	Melanie Plageman
	Transactional Workload I/O Performance Goals
	Common I/O Performance Issue Causes
	Postgres I/O Tuning Targets
	Postgres I/O Statistics Views
	Postgres I/O Statistics Views’ Gaps
	pg_stat_io (pg 16)
	Why Count Flushes and Extends Separately?
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Postgres UPDATE/INSERT I/O Workflow
	Why Count Flushes and Extends Separately?
	Why Track I/O Per Context or Per Backend Type?
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Postgres Autovacuum Workflow
	Why Track I/O Per Backend Type?
	Why Track I/O Per Context?
	Analytic Workload I/O Characteristics
	Why Track I/O Per Context?
	Why Count Flushes and Extends Separately?
	Data-Driven Tuning with pg_stat_io
	Shared Buffers Too Small
	Background Writer Too Passive
	Shared Buffers Not Too Small
	Future additions

